
Real-time Animation with a Seaboard

Simon Ringeisen

Bachelor Thesis
May 2017

Supervisors:
Christian Schüller

Oliver Glauser
Prof. Dr. Olga Sorkine-Hornung

Eigenständigkeitserklärung

Die unterzeichnete Eigenständigkeitserklärung ist Bestandteil jeder während des Studiums verfassten
Semester-, Bachelor- und Master-Arbeit oder anderen Abschlussarbeit (auch der jeweils elektronischen
Version).

Die Dozentinnen und Dozenten können auch für andere bei ihnen verfasste schriftliche Arbeiten eine
Eigenständigkeitserklärung verlangen.
__

Ich bestätige, die vorliegende Arbeit selbständig und in eigenen Worten verfasst zu haben. Davon
ausgenommen sind sprachliche und inhaltliche Korrekturvorschläge durch die Betreuer und Betreuerinnen
der Arbeit.

Titel der Arbeit (in Druckschrift):

Verfasst von (in Druckschrift):
Bei Gruppenarbeiten sind die Namen aller
Verfasserinnen und Verfasser erforderlich.

Name(n): Vorname(n):

Ich bestätige mit meiner Unterschrift:
− Ich habe keine im Merkblatt „Zitier-Knigge“ beschriebene Form des Plagiats begangen.
− Ich habe alle Methoden, Daten und Arbeitsabläufe wahrheitsgetreu dokumentiert.
− Ich habe keine Daten manipuliert.
− Ich habe alle Personen erwähnt, welche die Arbeit wesentlich unterstützt haben.

Ich nehme zur Kenntnis, dass die Arbeit mit elektronischen Hilfsmitteln auf Plagiate überprüft werden kann.

Ort, Datum Unterschrift(en)

Bei Gruppenarbeiten sind die Namen aller Verfasserinnen und
Verfasser erforderlich. Durch die Unterschriften bürgen sie
gemeinsam für den gesamten Inhalt dieser schriftlichen Arbeit.

nterschrift(en)

Real-time Animation with a Seaboard

Ringeisen Simon

Brig, 04. Mai 2017

4

ETH
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Bachelor Thesis

Real-time Animation with a Seaboard

Walk Left

•9
Look left

Introduction
Expressive animations of digital characters and 3D models is a crucial part in animation movies

and computer games. This artistic process is very time consuming and requires extensive experience
with special tools like 3D editors. In particular, it is difficult to intuitively control the temporal aspect
of an animation which is usually done iteratively by key-framing different poses and carefully tuning
and playing the transitions between them. Special input devices were developed [1, 2] which allow
a less experienced user to quickly manipulate rigged characters. While they are easy to use due to
their kinematics structure, it is hard to control independent degrees of freedom (DOF) simultaneously
with only two hands. Using dedicated tracking systems for body and face works well, but require an
extensive hardware and software setup which is often not affordable for a single users.

Task Description
In this project we would like to explore the possibilities of using a Seaboard as an input device for

real-time animation. This innovative evolution of a classic piano exposes 5 DOF for each touch. In
theory, this provides 50 DOF if played with 10 fingers. In the initial step, a simple interface should
be developed to receive and handle the Seaboard's midi output. Then the challenge is to derive and
explore approaches to use this input to puppeteer and animate a character in real-time. What concepts
used in the creation of modern electronic music could be adapted to this animation framework?

Detailed Task List
• Implement a simple framework to receive and handle the Seaboard's basic midi output.
• Familiarize yourself with the UNITY framework and create a simple puppet scene.
• Develop and implement a input handling, mapping concept to control the scene with the Seaboard.
• (Optional) Explore the concepts from modern electronic music and integrate them in this animation

framework (e.g. Looper-Device, Multi-channel, ...).

INTERACTIVE GEOMETRY LAB

Eyes closed Lookup

Punch

Frown

Bachelor Thesis

Real-time Animation with a Seaboard

Introduction

Expressive animations of digital characters and 3D models is a crucial part in animation movies
and computer games. This artistic process is very time consuming and requires extensive experience
with special tools like 3D editors. In particular, it is difficult to intuitively control the temporal aspect
of an animation which is usually done iteratively by key-framing different poses and carefully tuning
and playing the transitions between them. Special input devices were developed [1, 2] which allow
a less experienced user to quickly manipulate rigged characters. While they are easy to use due to
their kinematics structure, it is hard to control independent degrees of freedom (DOF) simultaneously
with only two hands. Using dedicated tracking systems for body and face works well, but require an
extensive hardware and software setup which is often not affordable for a single users.

Task Description

In this project we would like to explore the possibilities of using a Seaboard as an input device for
real-time animation. This innovative evolution of a classic piano exposes 5 DOF for each touch. In
theory, this provides 50 DOF if played with 10 fingers. In the initial step, a simple interface should
be developed to receive and handle the Seaboard’s midi output. Then the challenge is to derive and
explore approaches to use this input to puppeteer and animate a character in real-time. What concepts
used in the creation of modern electronic music could be adapted to this animation framework?

Detailed Task List

• Implement a simple framework to receive and handle the Seaboard’s basic midi output.

• Familiarize yourself with the Unity framework and create a simple puppet scene.

• Develop and implement a input handling, mapping concept to control the scene with the Seaboard.

• (Optional) Explore the concepts from modern electronic music and integrate them in this animation
framework (e.g. Looper-Device, Multi-channel, ...).

6

Abstract

In this thesis we explore how a digital music instrument can be used for real-time controlling of
animations. The device used is a Seaboard, which allows for multidimensional and polyphonic
input. It gives the player the possibility, to control many parameters at the same time.

Animating digital characters can be a very unintuitive and difficult process. It often requires
extensive knowledge and complex software. To create animations in real-time, which would
be interesting for interactive live performances, is even harder. Currently used systems have
various deficits. Drawing and sketching devices (like mouse and stylus) can only control a
small number of parameters, motion capture systems are limited by the performance of an actor
and with tangible devices it can be hard to control multiple body parts at the same time. Further
such systems can be very expensive to obtain and time consuming to use.

We propose a setup to use the input of the Seaboard in the game engine Unity, look at different
mappings, that could be used to animate a character and present the results of a small user
feedback round. We explain, how the Seaboard doesn’t offer a revolutionary way to create new
animations, but is a suitable device to control animations in real-time.

i

ii

Zusammenfassung

In dieser Arbeit erörtern wir, wie ein digitales Musikinstrument zur Steuerung von Animationen
in Echtzeit genutzt werden kann. Beim benutzten Gerät handelt es sich um ein "Seaboard",
welches multidimensionale und polyphone Eingaben erlaubt. Dies erlaubt dem Nutzer, viele
Parameter gleichzeitig zu steuern.

Digitale Figuren zu animieren kann ein sehr unintuitiver und komplizierter Prozess sein und er-
fordert oft Wissen, Erfahrung und komplexe Software. Animationen in Echtzeit zu generieren,
was für Aufführungen sehr interessant wäre, ist noch schwieriger. Heute genutzte Systeme
haben verschiedene Nachteile: Geräte zum Zeichnen und Skizzieren (wie Maus und Stylus)
können nur eine sehr kleine Zahl an Parametern beeinflussen, Motion Capture Systeme sind
durch die Fähigkeiten des Schauspielers limitiert und mit Geräten, welche durch Veränderung
von Modellen funktionieren, kann es schwer sein, mehrere Körperteile gleichzeitig zu steuern.
Ausserdem können solche Systeme teuer in der Beschaffung und aufwändig in der Nutzung
sein.

Wir präsentieren ein System, welches es erlaubt, das Seaboard in der Game Engine Unity zu
nutzen, betrachten verschiedene Modelle um Eingaben auf Animationen abzubilden und präsen-
tieren die Resultate einer kleiner Nutzerrückfrage. Wir erklären, warum das Seaboard zwar
nicht ideal ist, um neue Animationen zu generieren, aber ein sinnvolles Gerät zur Steuerung
von Animation in Echtzeit ist.

iii

iv

Contents

1 Introduction 1

2 Related Work 3
2.1 Different Devices to control an animation . 3

3 Background 5
3.1 ROLI . 5
3.2 Unity . 6

3.2.1 Anima2D . 8

4 Mapping Methods 11
4.1 Parameter types . 11

4.1.1 Input parameters (Seaboard) . 11
4.1.2 Output parameters (character animation) 12

4.2 What is a good Mapping? . 12
4.3 Mappings . 13

4.3.1 Key-Based Mapping . 13
4.3.2 Area-Based Mapping . 14
4.3.3 Gesture recognition . 15

4.4 Comparison to other Input Devices . 15

5 Implementation 17
5.1 Overview . 17
5.2 Technical Implementation . 17

5.2.1 Getting the data from the seaboard . 17
5.2.2 Connection Unity to the JUCE-library 18

v

Contents

5.2.3 Handling the data withing Unity . 18
5.2.4 Manipulating a Character . 19
5.2.5 The Character . 19
5.2.6 The Mappings . 23

6 User Feedback 27
6.1 Test Setup . 27
6.2 Test Results . 28

6.2.1 Interaction with the Seaboard . 28
6.2.2 Ideas for Mappings . 28
6.2.3 First Mapping: 1:1 KeyBased . 28
6.2.4 Second Mapping: 1:2 KeyBased . 29
6.2.5 Third Mapping: AreaBased . 29
6.2.6 General Comments . 29

7 Conclusion and Outlook 31
7.1 Reflection . 31
7.2 Conclusion . 32
7.3 Outlook . 32

Bibliography 33

vi

1
Introduction

Animated characters are used in many digital products like games or movies. Animating
characters is a complex task, which requires a lot of knowledge and, depending on the used
method, an extensive setup. It’s even more difficult to perform such animations live. An ex-
ample for such a scenario is envisioned in the Episode "The Waldo Moment" of the TV-Series
[Black Mirror, Netflix 2013], where a cartoon character is animated live with a complex com-
bination of face-tracking and other controllers, as shown in Figure 1.1.

Currently used systems have various deficits. Drawing and sketching devices (like mouse and
stylus) can only control a small number of parameters, motion capture systems are limited by
the performance of an actor and with tangible devices it can be hard to control multiple body
parts at the same time. Further, such setups can be very complex and costly, so that amateurs
mostly lack the resources to obtain or use them. In chapter 2 we take a look at different systems,
and what their limitations are.

In chapter 3 we explore how a digital music instrument can be utilized for real-time animation.
The device used is a Seaboard, which allows for multidimensional and polyphonic input: with
each touch interaction, the user can control 5 parameters, whereof 3 are continuous. When all
fingers are used, this allows for a high dimensional signal, which can then be used to animate
a character. We first look at the Seaboard and how we can interact with it. Further we describe
the tools that we use for this project.

A big challenge is to find sensible mappings that allow users to get used to the interaction
quickly and perform on the surface naturally, while still being powerful enough to control one
or multiple characters and their surroundings with many parameters. In chapter 4 we look at
factors, which can be used to describe a good mapping and give an overview on possible kinds
of interactions.

In chapter 5 we talk about the actual implementation, i.e. how we connect the Seaboard to Unity,

1

1 Introduction

(a) (b)

Figure 1.1: (a) The cartoon character Waldo, shown in a live TV interview and (b) a performer control-
ling the character with different input devices, Netflix screenshots

interpret the data and use it to control our demo-character. We describe, how our character is
built up and present three mappings, which follow different approaches to map the input to a
character animation.

We also conducted a small feedback round, in which we tested our setup by presenting three
mappings to some participants, which gave us valuable insights. In chapter 6 we describe the
test setup and some interesting results.

In chapter 7 we finally reflect over our work, conclude whether the Seaboard is a suitable device
to create live animations with and suggest, what further research could be carried out in this
field.

2

2
Related Work

2.1 Different Devices to control an animation

Sketching / Drawing

Mouse and keyboard are devices, that are regularly chosen for animation systems. They are
cheep, highly available and familiar to users. One example of such a system is [Bai et al. 2016],
where the user uses a mouse (and keyboard for shortcuts) to modify a character within keyframes,
which are then interpolated. Their main work lies in the combination of simulated and keyframed
animations. This is a big topic in animation, as keyframing alone gives the user creative free-
dom, but requires a lot of effort and knowledge, as creating natural movements is not trivial.
Other systems like [Choi et al. 2016] rely on existing animations and change them by drawing
(either with a mouse or a stylus as shown in 2.1). [Messmer et al. 2016] use modern hand held
devices with cameras and touchscreens. Like this, animations can be created intuitively in an
iterative process.

Although the creator has big creative freedom in such systems, they do not allow for real-time
animation.

Motion Capture

Other systems rely on motion capture. "Character Animator" [Adobe Systems 2017] uses a
standard webcam to track the face of a player, which is then mapped to a 2D-character. This
enables the user to animate in real-time, but restricts him to facial expressions. Other unparame-
terized movements can be controlled by keystrokes or special triggering facial expressions. The

3

2 Related Work

Figure 2.1: SketchiMo: Sketch-based Motion Editing for Articulated Characters

(a) (b)

Figure 2.2: (a) FlexiBend: Enabling Interactivity of Multi-Part, Deformable Fabrications Using Single
Shape-Sensing Strip (b) Rig Animation with a Tangible and Modular Input Device

user would e.g. not be able to choose the height in which the character holds its arms. Other
systems use body tracking (e.g. [Ishigaki et al. 2009]), which allows for high-quality results,
but require expensive setups. Cheep depth-sensing cameras allow a reduction of cost (while
also reducing the quality compared to high-quality body tracking), but still restrict the user to
humanoid movements. Further the animator is restricted by the physical abilities of the actor.
Others (e.g. [Seol et al. 2013]) created systems to map humanoid movements to non-humanoid
characters. Such a setup still requires an actor and is limited to a single character.

Tangible Devices

Tangible devices try to facilitate the process of animating by allowing the user to directly ma-
nipulate a physical structure. [Chien et al. 2015] rely on a shape sensing strip (2.2 a). This
limits the user to a rather small set of character positions. This is overcome by systems like
[Jacobson et al. 2014] or [Glauser et al. 2016], which use a modular approach with joints (which
detect 3D rotations) and splitters (2.2 b). With such a setup the skeleton of the character can be
mimicked. This allows for a very intuitive posing, but changing many bones at the same time
can be hard to do in real-time.

4

3
Background

This thesis is based on the Seaboard, produced by ROLI1, founded 2009 in London. Further we
rely on software provided by the same company and on Unity. Within Unity we use the Plugin
Anima2D. In this chapter we provide an overview of these tools.

3.1 ROLI

Seaboard

The Seaboard (3.1 a) is a music instrument shaped like a keyboard, but instead of individual
keys, its surface consists of a continuous silicone material. The alignment of the so called
’keywaves’ corresponds to key on a regular keyboard. These keywaves are surrounded by a
ribbon on the top and the bottom. The complete surface is sensitive to 5 types of input, also
called "Five Dimensions of Touch" 2:

Strike The velocity and force of a finger making contact with a keywave

Glide Horizontal movements from side to side on a keywave and along the ribbons, also
called pitchbend (the pitch of the generated sound)

Slide Vertical movements up and down a keywave, also called timbre (the characteristic of
a sound, e.g. how distorted it is)

Press The continuous pressure applied to the keywave after the initial strike

1For more information see [ROLI Ltd 2017b]
2Definitions according to [ROLI Ltd 2017c], for icons see 3.1 b

5

3 Background

(a) (b)

Figure 3.1: (a) The ROLI Seaboard RISE 49 (b) The icons used by ROLI to depict the five dimensions
of Touch

Lift The speed of liftoff from a keywave

Next to the keywave surface the Seaboard also offers 3 (one-dimensional) sliders and 1 (two-
dimensional) XY touchpad.

For this project we use the Seaboard RISE, which is nothing but a MIDI-Interface (i.e. only
detecting interactions and sending them to an interpreter, but not generating any sound). As reg-
ular MIDI [MIDI Manufacturers Association 2017] applies channel-wide messages (like pitch-
bend and timbre) to all notes, a modification of MIDI is used: MIDI MPE (Multidimensional
Polyphonic Expression) [Ben Supper and others 2015] uses the first MIDI channel for global
messages (like the sliders and the XY touchpad) and the remaining 15 channels to transmit one
note per channel, including channel-wide messages. We used the ’Seaboard Rise 49’, with a
note-range of 4 octaves. The sensitive surface covers a space of roughly 70x17 centimeters.

JUCE

JUCE (Jules’ Utility Class Extensions) [ROLI Ltd 2017a] is a C++ framework that was first
released to public by Jules Storer in 2009. In 2014 JUCE was acquired by ROLI. In this project
we use modules from JUCE to easily connect a MIDI instrument and interpret the messages
sent via MIDI MPE.

3.2 Unity

Unity [Unity Technologies 2017a] is a cross-platform game engine which was first announced
in 2005. Unity is widely used and offers many tools necessary for game development.

Projects, Scenes and Scripts The project window (3.2) allows us to sort resources and
updates internal links, when files are moved or renamed. The scene window let’s us easily put
together the elements of a game (called GameObjects), which then can be further manipulated
with the inspector and the hierarchy view. Scripts (written in C# or JavaScript) allow for direct
access to GameObjects in code.

6

3.2 Unity

Figure 3.2: Overview of Unity: Hierarchy to the left, Scene in the middle, Inspector to the right, Project
explorer on the bottom.

Animations Further, Unity has an extensive toolchain to create and play animations: The
Animation window allows us to record animations (either in real-time or step-by-step with
keyframes) by tracking changes in the GameObjects parameters (e.g. position or rotation).
These animations can be edited on a dopesheet (3.3) (table with time and changed parameters
on the axes, allowing to move around dots, expressing when a parameter is changed) or by
curves (3.4) (graph with time and values on the axis, allowing to move around curves, changing
time or value of a parameter). Animations can then be used in the animator, which helps us
to easily create a state machine, switching between animations. We are able to create different
layers of a character to create state machines independent of each other (e.g. a head-layer for
facial movements and a body-layer for body movements). Changing states can be induced by
triggers, parameters (booleans, integers or floats) reaching a threshold or combinations thereof.

Figure 3.3: Dopesheet

7

3 Background

Figure 3.4: Curves

Figure 3.5: The actual BlendTree to the left, parameters on the right

BlendTrees A special kind of state is the so called BlendTree (3.5), which allows for in-
terpolation between animations by a float parameter. In our project we make extensive use of
BlendTrees: we use them to interpolate between animations (e.g. a linear interpolation of the
character idling, walking in small steps and walking in big steps) and between states (which are
technically still animations, but with a single keyframe, e.g. a linear interpolation between the
character smiling and frowning).

This setup allows us, to first create a character, then create animations and animators and finally
change parameters of the animators in code to play animations. More details on these tools can
be found in the Unity user manual [Unity Technologies 2017b].

3.2.1 Anima2D

We use Anima2D to work with bones, skinning and inverse kinematics (IK). It is well integrated
in Unity, which allows a seamless workflow.

Bones allow us to create a skeleton for a character, which is very useful when animating. A
skeleton holds together the character and is the object we change when doing an animation.

Skinning is necessary, to stick a skin (i.e. a sprite with the texture of the character) to the
bones. Anima2D also supports SkinMeshes, dividing a sprite into a mesh, which then gets

8

3.2 Unity

weights on how much each bone affects a sprite at a certain point. This is useful to e.g. use a
single sprite for an arm with two bones: The upper part of such a sprite will have high weights
for the upper bone and low values for the lower one and vice-versa. A detailed explanation of
this task can be found in [Komatsu 1988].

Inverse Kinematics are used to further facilitate the process of animating. Instead of mov-
ing every bone of an arm to the correct position, we simply move an IK-point at the hand of the
character. The IK-mechanism then updates all bone positions automatically. Anima2D supports
two types of IK-point. Limb-IK (as described by [Welman 1993]) is ideal for bone-structures
like arms and legs, having a fixed, small number of bones bending in a certain way. CCD
(Cyclic Coordinate Descent) IK (as described by [Wang and Chen 1991]) are made for a chain
of bones, e.g. a tail.

9

3 Background

10

4
Mapping Methods

The Seaboard provides users with a plethora of input parameters: if all ten fingers are used
simultaneously, 30 continuous, 10 initial and 10 ultimate parameters can be modified. We need
an intelligent mapping to the parameters of the animation, as it is already hard to control few
fingers individually, especially if every finger has another purpose. In this section we look at
some possible mappings and discuss the benefits and disadvantages.

4.1 Parameter types

4.1.1 Input parameters (Seaboard)

As stated in section 3.1.1, each finger on the surface of the seaboard provides us with 5 parame-
ters. ’Strike’ and ’Lift’ only change when the finger touches, respectively lifts from the surface.
’Glide’, ’Slide’ and ’Press’ are updated continuously while the finger is touching the surface.
Further, there are global parameters, which can be used. On the left part of the Seaboard, there
are 3 Sliders, one X/Y-pad, a function and an octave shift. Depending on the mode in which the
Seaboard is, the 3 sliders can be used as global MIDI-parameters or to manipulate the sensitiv-
ity of the 3 continuous parameters ’Glide’, ’Slide’ and ’Press’. The X/Y-pad and the function
shift can only be used as global MIDI-parameters, while the Octave-shift does not send any
additional MIDI-parameters, but only changes the note-range of the keys.

The Seaboard also has some limitations, most of them being implied by the fact, that it was
designed to be a music instrument. Especially two fingers, which are to close together, might
be interpreted as a single finger.

11

4 Mapping Methods

4.1.2 Output parameters (character animation)

There are many different parameters that can be used to animate a character. We group these
into direct parameters, which directly manipulate a physical entity, like the position of an IK
point or the angle of a bone, and indirect parameters, like the speed a character runs at. Although
all of these parameters can be represented by real numbers (as every direct parameter of a digital
character can be parametrized by position, scale and rotation and indirect parameters are already
abstracting some behavior, e.g. the blending between two animations, by using a real number),
for some (e.g. the direction in which the character looks), a binary representation makes more
sense. In 5.2.5 we give a concrete example of such parameters.

4.2 What is a good Mapping?

To rate Mappings, we first need to know, what the advantages of a good mapping are. [Seffah et al. 2006]
look at multiple models to compare usability of software and describes the QUIM model, con-
sisting of ten factors. Not all aspects for software usability are relevant for a mapping (such as
safety1, trustfulness2, accessibility3, and universality4) and others (i.e. scope) are missing. We
will therefore use the following set of factors to compare the mappings.

Learnability

Learnability describes how much effort it takes to be able to understand a mapping. It highly
depends on how intuitive a mapping is. This also includes the effort to learn the physical
movement (and therefore also the complexity of the necessary movements), which can be very
dependent on the skills and previous experience of the user.

Efficiency and Effectiveness

These factors describe, how much effort it takes to reach a goal and how accurate the task can
be executed. The factor would be reduced by physical limitations, like very fast movements,
which have to be performed for a long time or keys to touch, which lay too far away from each
other.

1Safety: How safe a certain software is to use, i.e. not harming resources or data, as described in [ISO/IEC
9126-4 2001]

2Trustfulness: How much the user trusts the software, can be very important for e.g. e-commerce websites
3Accessibility: How well software can be used when being disabled. This would also be an interesting aspect,

but is not the focus of our work.
4Universality: How well people with different cultural backgrounds can use the software, e.g. if it is translated

into different languages. This is not relevant for the rather technical term of a mapping.

12

4.3 Mappings

Scope

Scope is not included in QUIM, but as one of the biggest advantages in using the Seaboard lays
in the high amount of manipulatable parameters, we need a notion to describe how many of
these are actually utilized. Scope therefore defines the ratio of available parameters on the input
device compared to the parameters which are used in a mapping. If this factor is very low, we
waste some potential of the Seaboard. This parameter loses its importance, when we only want
to control few parameters which easily can be spaced on the Seaboard, but is very important
for controlling a big scenery with many characters and lots of parameters to manipulate the
environment.

Usefulness

The Usefulness depends on the previous parameters, but instead of focusing on the overall
mapping, we want to know how many parameters we can control at the same time. An example
for a low usefulness would be, if we mapped 3 parameters onto three keys, which can’t be
reached with one hand at the same time. For a higher usefulness these three keys could be
placed close enough, that the user can control all of them simultaneously. A high Usefulness is
often opposed to the Learnability, as a higher density of parameters can imply a more complex
mapping, being more difficult to understand.

Other Parameters and the Perfect Mapping

Satisfaction, the subjective feeling when using a thing, is very important when using a new
technology and will be observed in chapter 6, but can’t be seriously discussed on an abstract
level. Productivity (how much time is spent on the actual task, not on setting up the environment
etc.) only makes a difference if there is a task involved, not directly solving the actual task. We
will not focus on this, as most presented mappings are static. This would however play a role
when comparing different learning mapping systems.

Where the sweet spot between Learnability and Usefulness lies, depends both on the situation
where the mapping is used and the abilities of the player. For a novice user, e.g. at an exhibition,
an intuitive mapping is more valuable, while a proficient user, e.g. the animator of a TV-show,
would prefer a high Usefulness of the mapping.

4.3 Mappings

4.3.1 Key-Based Mapping

In a Key-Based Mapping each key relates directly to one parameter (one-to-one) or to a set
of parameters (one-to-many) of the character. An example of this could be a linear relation
between the timbre and the walking speed.

13

4 Mapping Methods

In a one-to-one mapping only one type of interaction is allowed per key and the interac-
tion may not span over multiple keys. For this reason, ’glide’ is not very interesting for this kind
of mapping. A one-to-one mapping can be very intuitive, especially due to it’s simple ’cause
-> effect’ relationship. It is also effective, as a finger is only used for a single interaction-type.
Further, a one-to-one mapping has a pretty high Scope, as we can in total map 49 keys to 49
parameters. But this kind of mapping has a pretty low Usefulness: if we assume, that we can
only move a couple of fingers at the same time, we end up with only a couple of manipulatable
parameters. An example for a one-to-one mapping would be the pressure of a single key being
linked to the speed the character walks at.

A one-to-many mapping can tackle this problem. In using more than only one interaction-
type on a single key (but still not allowing interaction over multiple keys), we can manipulate
many more parameters at the same time. It therefore has a higher Efficiency and a higher
Usefulness. The Learnability now depends on the set of parameters which we map to a key: if
they are parameters of one logical parameter group, such a mapping can be very intuitive. The
Effectiveness also depends on the concrete mapping: a mapping that requires big movements
(timbre/pitchbend) of fingers on the same hand can be very confusing. This is a situation where
advanced piano players have a big benefit, as they already have some muscle memory to perform
these complex movements. An example for a one-to-many mapping would be the pressure and
timbre of a single key being linked to the speed the character walks at, respectively how zestfully
he walks .

4.3.2 Area-Based Mapping

Instead of looking at each key individually, we can take advantage of the Seaboard’s continuous
surface and combine keys into areas. In these, we can not only look at the keys as separated
elements, but as groups. This allows us to use not only the 5 standard interaction-types of the
Seaboard, but also combinations thereof. Especially elements from music theory, like intervals
and chords, might be interesting. These are already well known by pianists and allow a low
learning-curve. Also, this already allows for some gesture-based movements, further increasing
intuitivity: Opening the gap between two fingers can easily be visualized as opening the mouth
of a character. The usage of such visualizable movements help to make a mapping intuitive. But
this can, especially for non-musicians, decrease the Efficiency, as the finger-positioning does not
feel natural. This kind of mapping allows for many parameters within a small area: depending
on the different combinations of the fingers we can choose which parameter to manipulate in
which way. The Usefulness of such a mapping can be very high, but is also dependent on the
abilities of the player.

Special case: Select/Modulate

A special case of this area-based mapping is the Select/Modulate mapping: we use one area to
decide which parameters we want to manipulate on the other area. An example would be the left
hand deciding which bodyparts the right hand manipulates. This again provides an extensive
usage of the available space, but decreases the Usefulness in the case where we use both hands

14

4.4 Comparison to other Input Devices

for one and the same action. As we are not differentiating the modulator’s input we have to
apply the same changes to the selected parameters. Cognitively, this mapping might be very
interesting in respect to Learnability: as with many music-pieces we lay the base with our left
hand and modulate the melody with the right hand.

4.3.3 Gesture recognition

A higher-level approach would be, to rather look at gestures than at exact inputs. This could
allow for very intuitive mappings: we could pinch to increase the size of our character or could
mimic a walking-gesture to define the walking speed.

For this system, one would require a well trained gesture recognition system. With such a sys-
tem, the user could teach the system its own gestures and mapping. In respect to intuitivity this
would be very interesting for proficient users, but could be very confusing for novel and short-
time users. Depending on the sensitivity of such a recognition system, one could extensively
use the Seaboard’s surface while playing. In general such a system could leave many choices to
the player, which would especially be very interesting for proficient users.

4.4 Comparison to other Input Devices

Sketching/Drawing devices often only offer a very limited range of available parameters. A
mouse offers two continuous dimensions (position on XY-axis) and a stylus might additionally
provide applied pressure and the angle, at which it is held. The devices only have a small number
of parameters, especially when compared to a device like the Seaboard, which limits the amount
of parameters that can be changed simultaneously (and therefore reducing the Usefulness). On
the other side, sketching and drawing devices are familiar to users, which helps them to get used
to the setup faster (increasing the Learnability).

Tangible Devices suffer from a similar problem. Although they may (depending on the
actual device and setup) have many more parameters which can be changed at the same time,
it can be hard to control several joints with high precision as it is hard to grab and move them
individually. The biggest benefit uf such a device is that the user can represent the characters
structure, making the interaction very intuitive, which leads to a very high Learnability.

Motion Capture has the big benefit, that it can track human movements in the most natural
way possible, which makes it an ideal system for humanoid animations. This benefit decreases,
when tracking animations for non-humanoid character. Even though some methods can solve
this problem with intelligent mappings, the animator is still restricted to one animated character
and the ability of the actor. This limitation to create unrealistic (cartoonist) movements can be
interpreted as a limited Usefulness.

15

4 Mapping Methods

16

5
Implementation

In this chapter we present the developed system to animate characters with the Seaboard, using
JUCE and Unity as main tools.

5.1 Overview

The Seaboard is a MIDI-Interface, which sends it’s data, in the form of MIDI-MPE to a PC via
USB-cable. This data is caught by a DLL, which uses the C++ framework JUCE to connect
to the Seaboard and decode the MIDI-MPE binary data, and forwards it to Unity via callback-
functions. Within Unity this data is organized in a Controller, which forwards the data to a
mapper. Using a character handler, the mapper manipulates the parameters of the animated
character. A symbolic overview is provided in 5.1.

5.2 Technical Implementation

5.2.1 Getting the data from the seaboard

To connect to the Seaboard and decode the binary data we rely on JUCE (3.1). We allow connec-
tion to an instrument with the InstrumentHandler class. This class exposes callback functions,
which will report new and removed notes, as well as changes in pressure, pitchbend and timbre.
Further the InstrumentHandler class automatically connects to the first MIDI-input device that
can be found. It enables input for this device, creates zones on the instrument, for which we
want to get the data, and initializes the AudioDeviceManager, which will trigger Callbacks, as

17

5 Implementation

DLL (C++,
using JUCE)

Unity

MIDI MPE Signal JUCE API Mapper Character 2

Character 1

Character 3

Seaboard
Controller

Figure 5.1: Overview of our system setup to get the data from the Seaboard into Unity to animate a
character

soon as we get new inputs. Further we add a Listener to the MPEInstrument, which will in our
InputHandler class, call functions for adding and releasing notes, as well as changing pressure,
pitchbend and timbre. In these functions we change the values to be conveniently usable in our
system and call the appropriate function to return them to the consumer.

5.2.2 Connection Unity to the JUCE-library

As JUCE is written in C++ and we use C# in Unity, we need to connect these two languages
with each other. We used C# Marshaling for this, offering external C-style functions in a C++
DLL to link to the instrument. In Unity we import these C-style functions from the DLL and
setup the callback functions using delegates.

5.2.3 Handling the data withing Unity

The main component to connect the Seaboard to the mapper is the SeaboardController. Latter
uses the Linker to establish a connection with the DLL file and fills a local data structure with
the currently played notes on the Seaboard using the aforementioned delegates. The currently
active notes (interactions) are stored in a Dictionary, the ID generated by the Seaboard being the
key of the interaction. This allows to track the interaction, even if the user moves over multiple
keys. Further the Controller offers the possibility to listen to changes, again using callback
functions. The SeaboardController listens to all these changes and adds them to a List. As
Unity only allows certain changes on Characters within the game loop, we have to await the
next time the ’Update’ function is called. As soon as one occurs, we go through this list and
send all the events to the responsible mapper. In our demonstration, we divide the Seaboard
into 4 blocks, each with the size of an octave. In the first block, we can select which mapping
we want to use. The other 3 blocks are then evaluated using this mapping. Each mapping offers
a ’map’ function, which receives a short version of which note has encountered which change
(NoteOn, NoteOff, PitchbendChanged, TimbreChanged and PressureChanged) and a detailed
object, in which state the current note is. This allows the mapper to implement a state based,
event based or combined mapping.

18

5.2 Technical Implementation

5.2.4 Manipulating a Character

The mapper (5.2.6) then depicts what to manipulate on the character. The manipulation is done
with the help of a CharacterHandler, which abstracts the interaction between Unity’s GameOb-
ject and the mapper. A CharacterHandler defines a list of Elements, which are visible to the
mapper. These Elements all consist of ’getParams’, ’offsetParams’ and ’setParams’ functions,
which allow the mapper to analyse the character and change it. This dynamic approach is ideal
to add dynamic mapping, which might also depend on some learning system. Also, this allows
for a rather simple exchange of the Character.

5.2.5 The Character

In our demonstration, we use a bone-based 2D-character. The character consists of sprites,
which are put together, bound to bones (as described by [Komatsu 1988]) and appended with
IK points.

We then created animations using Unity’s Animation tool, which allows for keypoint based
animations. Especially, all facial expressions are animations with a single frame. Using Unity’s
Animator and Layers created with Anima2D, we use blendtrees and statemachines to blend and
switch between animations. This allows for a simple, parameter based interface and spares us
doing any interpolations.

Sprites and Bones

As a starting point for our sprites we use "Ubbie", a Character of
[UYoung Culture & Media Co., Ltd. 2017], which is provided as a demo-project in
[Dragonbones 2017]. We exported the character to a 1024x1024 pixel image using ’Drag-
onBones’ and later edited it to fit our needs. Modifications to the sprites were necessary, as
we wanted to separate facial elements (mouth, eyes,. . .) from the head itself. Further we com-
bined the upper and lower arm to get a seamless transition when bending the arm with bones and
added some own elements, like eyebrows and red cheeks. This sprite image (5.3) is then sep-
arated into individual sprites, one per body part and facial element. After placing these sprites
in the scene, we add bones using Anima2D. Starting with the root bone, the hip, we create a
skeleton covering arms, legs, head, cape and ears. As we also want to animate the facial expres-
sions, we add bones to control mouth, eyes and eyebrows. We add a further bone to be able to
animate the goggles. Finally, we need to bind the sprites to the bones, which is accomplished
using Anima2D’s ’SpriteMesh Editor’. Now the sprites will follow the movement of the bones.
An image of the setup is shown in 5.3 (a).

IK-points

’Anima2D’ allows to handle IK points in two different ways: with ’Cyclic Coordinate Descent’
(CCD) (as described in [Wang and Chen 1991]), which can handle a chain of bones, and ’Limb’
(as described in [Welman 1993]), which is specialized to handle two-bone structures like arms

19

5 Implementation

Figure 5.2: The texture of our character "Ubbie"

20

5.2 Technical Implementation

(a) (b)

Figure 5.3: (a) Sprites and Bones of our character. (b) IK points of our wireframed (showing the actual
mesh applied to the sprites) character.

and legs. Especially, the ’Limb’-IK allows to define in which direction the arm/leg is facing,
giving the user the possibility to choose in which direction the middle joint will bend, thus
bending arms and legs in unnatural ways can be prevented. For our character, we use Limb-IK
for arms and legs and CCD-IK in the mouth corners. Using these IK-Points it is much easier to
pose the character to a desired position, which facilitates the process of animating. An image
of the setup is shown in 5.3 (b).

Animations and BlendTrees

To animate our character, we use Unity’s Animation tool, which allows to create keypoint based
animations. The record tool enables the user to pick a frame and then manipulate the character.
The Animation tool will detect the changed positions, rotations and scales, only adding these
to the so called Dopesheet, which is basically a table with the frames on the X-, and the ani-
mated elements on the Y-axis. Further Unity’s Animation tool ensures smooth animations by
manipulating the actual curves interpolating between the different positions of the character.

21

5 Implementation

(a) (b)

Figure 5.4: (a) The state machine controlling the goggles. (b) The BlendTree controlling facial expres-
sions.

For our character we created a set of animations: ’idle’ (the character is slightly moving to
prevent an unnatural still standing position), ’small steps’ and ’big steps’ (where the character
is walking in different step sizes, but with the same pace) and ’put on goggles’ and ’take off
goggles’. Further we create animations with a single frame for different facial expressions:
smile, sad, evil, angry, shy and colbert1. We use animations for facial expressions as we want
to be able to plug them into blendtrees where Unity can interpolate between them.

Unity also provides us with Animator, a tool to create state machines and blendtrees to switch
and interpolate between animations. As we want to be able to control the face independent of
the body, we separate the character into multiple layers, one for the complete body, one with the
right arm and the goggles for the "put on goggles" and "take off goggles" animations and one
with all facial elements for facial expressions. As we want the latter ones to be more visible, we
set the weight of their layers to 100%. This will overwrite movements in the uppermost layer
of the complete body.

With the layer for the complete body we control the walking movement. Two parameters for
speed and stepsize control a blendtree: speed changes the actual speed at which the animation
is played, stepsize controls a blendtree that interpolates between the three animations ’idle’,
’small steps’ and ’big steps’.

To control the goggles we use a state machine (5.4 a), which goes from an animation, where the
character is wearing no goggles, over the animation of putting on the goggles, to a animation,
where the character wears the goggles (and the other way around). Such a state change is
brought forth by a trigger. We further use another parameter to change the animation’s speed

To control the facial expressions we use a blendtree (5.4 b) with multiple steps. In a first step,
we handle the more extreme expressions: colbert and shy. We use a parameter to interpolate
between shy, other expressions and colbert. In a second step, we use two parameters (happiness
and aggressiveness) to blend between the four animations angry, evil, sad and smile, where we
say that smile and evil have a high happiness score and angry and evil have a high aggressiveness
score.

1A reference to the Late Show host Stephen Colbert, who proposed the "Face With Raised Eyebrow" Emoji,
added to Unicode 10.0

22

5.2 Technical Implementation

name type description

walking_direction boolean The direction, in which the character is facing
toggle_goggles trigger Triggers the character to put on / take off the goggles
toggle_goggles_speed float Defines the speed, with which the character puts on /

takes off the goggles
step_size float Defines the size of the steps
walking_speed float Defines the walking speed
happiness float Defines, how happy the character is (from sad to happy)
offensiveness float Defines, how offensive the character is (from shy to ag-

gressive)
colbertness float Defines, how strong the colbert expression (Face With

Raised Eyebrow Emoji) is done

Table 5.1: The parameters that can be changed in our character

Animation Parameters

We have already mentioned the use of parameters to manipulate our character. 5.1 provides a
complete list of all parameters, and what they change.

5.2.6 The Mappings

To test different approaches, we implemented three mappings. Each of them focuses on a type
of mapping, but can also contain elements of other types. None of these mappings is supposed
to be a perfect one, but rather help us, to rate the different approaches.

1:1 KeyBased

The first mapping (5.5) focuses on a one-to-one mapping between keys and parameters. From
left to right, we map to these parameters:

The goggles are controlled by hitting the key. The harder, the faster the goggles are put
on / taken off. The continuous pressure can be used to further change the speed.

The direction in which the character is facing, is changed by touching the key.

The number of steps are controlled by the timber of the key, low meaning few, high
meaning many steps.

The step size is controlled by the timber of the key, low meaning small, high meaning big
steps.

The happiness is controlled by the timber, low meaning sad, high meaning happy.

The offensiveness is controlled by the timber, low meaning shy, high meaning aggressive.

23

5 Implementation

The colbertness is controlled by the timber, low meaning no colbert, high meaning col-
bert.

As the colbert expression is incompatible with the other facial expressions, it has precedence
over them.

1:2 KeyBased

The second mapping (5.6) focuses on a one-to-two mapping between one key and two parame-
ters. From left to right, we map to these parameters:

The goggles are controlled by hitting the key. The harder, the faster the goggles are put
on / taken off. The continuous pressure can be used to further change the speed.

The direction in which the character is facing, is changed by touching the key.

The number of steps and the step size are controlled by the timber and the applied
pressure on the key, low timbre meaning few, high meaning many steps, low pressure
meaning small, high meaning big steps.

The happiness and the offensiveness are controlled by the timber and the applied pres-
sure on the key, low timbre meaning shy, high meaning aggressive, low pressure meaning
sad, high meaning happy.

The colbertness is controlled by the timber, low meaning no colbert, high meaning col-
bert.

As the colbert expression is incompatible with the other facial expressions, it has precedence
over them.

AreaBased

The third mapping (5.7) focuses on a mapping between areas and parameters. From left to right,
we map to these parameters:

The goggles are controlled by hitting the key. We separate the key in two parts: touching
the upper part puts the goggles on, the lower part takes them off. The further away from
the key’s center the user touches, the faster the action is executed.

The number of steps and the step size are controlled by the timber and the applied
pressure on the key, low timbre meaning few, high meaning many steps, low pressure
meaning small, high meaning big steps.

The direction in which the character is facing, is changed by touching the area with a
second finger, while touching the key to the left at the same time. This corresponds to an
interval on the piano. The direction is preserved when the finger is removed.

The happiness and the offensiveness are controlled by the timber and the applied pres-
sure on the key, low timbre meaning shy, high meaning aggressive, low pressure meaning
sad, high meaning happy.

24

5.2 Technical Implementation

The colbertness is controlled by touching the area with a second finger, while touching
the key to the left at the same time. This corresponds to an interval on the piano. The
value is set to zero when the finger is removed.

As the colbert expression is incompatible with the other facial expressions, it has precedence
over them.

Figure 5.5: 1:1 KeyBased Mapping

Figure 5.6: 1:2 KeyBased Mapping

Figure 5.7: AreaBased Mapping

25

5 Implementation

26

6
User Feedback

6.1 Test Setup

We set up a test that takes about half an hour to conduct. It consists of a general part, where
we learn about the tested person (e.g. abilities to play instruments, knowledge in animat-
ing/puppeteering, whether they had knowledge of or experience with the Seaboard before).
After this, we presented the tested person with our character and told them, what it can do. The
tested person was then asked to propose a possible mapping1.

In the next part, we presented the persons with three different mappings (as described in 5.2.6),
explained them and let the persons play with them for a while. Later, they were given a list of
tasks (like "make the character smile"), which they had to execute. Finally, they were asked,
what they liked and disliked about every mapping and what they would improve.

The participants were equally split into females and males and half of the participants were good
piano players, but none of the participants played the Seaboard regularly. Most participants
were aged between 18 and 30 years old. Six tests were conducted by filming the participants,
their inputs on the Seaboard and the moving character, while the other four were conducted
like an interview, where we regularly invited the participants to share their opinion. Further,
the mappings were improved after a first series of tests. Thus, these results do not represent a
scientific study, but rather a feedback which helped us to rate our work and mappings and to
conclude, whether the Seaboard is an interesting device to use for our purpose.

1Only the second group was asked this question

27

6 User Feedback

6.2 Test Results

In this section, we present our findings after testing ten people. The results were attained by
questioners, directly interviewing the participants and by analyzing the video-material.

6.2.1 Interaction with the Seaboard

People, who had not interacted with a Seaboard before, approached it very differently. Some
were very careful when touching the surface, although it is very durable and most participants
were surprised by the sensitivity. Pianists were generally confused that the keywaves are, in
contrary to a keyboard, not a flat surface. Further, some participants had difficulties to distin-
guish black and white keys and/or were confused by the missing tactile feedback.

We noticed two points, where it made a difference, if the participant had experience playing a
piano. First, they were able to find the correct key to hit much easier and most pianists also tried
to place (and rest) their fingers on the surface according to the mappings. Second, pianists more
often had problems, to ’Glide’ over the surface, as this is a movement that a normal Pianist
would never use and might therefore be contra-intuitive.

6.2.2 Ideas for Mappings

We were given many different ideas when asking the participants for their own idea of a map-
ping. They ranged from an AreaBased-Mapping, where the surface is used like a touch screen
to change parameters, over an approach using the addition inputs (XY-pad, sliders) to select a
bodypart, which would then be modified on the surface, to a technique, interpreting what the
user plays in a musical way (e.g. which harmony is played at which pace). It was further in-
teresting, that most pianists associated basic movements of the character’s body in regions with
lower keys and more detailed elements to higher pitched keys.

6.2.3 First Mapping: 1:1 KeyBased

The 1:1 KeyBased mapping was well understood. Especially putting on / taking of the goggles
and changing the walking direction was reported to be very easy. Some participants had diffi-
culties with the far range of the ’Slide’, reaching over nearly the complete key. Also, for some it
was very hard to move multiple fingers in different directions, e.g. when reducing the step-size
while increasing the step speed at the same time. Further, most participants were confused by
the separation of step size and step speed and had difficulties to remember, which does what.
In contrary most participants liked the facial control, where happiness and offensiveness are
controlled on different keys.

In this mapping, as well as in the 1:2 KeyBased mapping, the precedence of the colbert, re-
spectively the need to disable colbert to be able to use another facial animation, confused many
participants.

28

6.2 Test Results

6.2.4 Second Mapping: 1:2 KeyBased

For most participants, the 1:2 KeyBased mapping was slightly harder to understand and less
intuitive than the 1:1 KeyBased mapping. Controlling the facial expressions being more difficult
was mentioned most. Some participants had trouble developing a good feeling for how much
pressure to apply to get the desired effect. Generally, the walking animation was easier to
change, as the combination of step-size and speed onto a single key made more sense for the
participants.

6.2.5 Third Mapping: AreaBased

The AreaBased mapping was generally rated more difficult to understand, but easier to use.
The new way to control the goggles was not received well. Some participants repeatedly tried
to trigger a change by sliding up/down the key instead of pressing at a certain position. The
way to change the direction, in which the character looks, further confused some participants.
Most of then got it right after trying a couple of times and rated it more intuitive then before.
One participant proposed to use this new, finer parametrization to change the direction of the
character not only binary. Another one suggested to use two distinct keys for each direction.

Two piano-playing participants further suggested, to change the direction in which the interval
is made on the right hand. Like this, the movement would be mirrored from the left hand, as
it is often when playing the piano. Generally we noticed, that participants tended to keep their
left hand on the surface more often. Many of them even unconsciously controlled the walking
animation during the whole test, especially changing the direction when the character was near
the boarder.

6.2.6 General Comments

It was very interesting to see, how people with similar abilities preferred different kinds of
mappings. Most of the participants further liked the idea of using the Seaboard as a tool for
animating and many had a lot of ideas, how the character could be extended to do different
things.

The participants needed some time, to get used to the Seaboard, especially to get a feeling for
how sensitive the Seaboard is. Further we realized, that users were confused very fast, when
the setup did not produce the animation, which they were expecting. This partially lies in the
missing ability of the Seaboard to give any direct (e.g. haptic or visual) feedback.

29

6 User Feedback

30

7
Conclusion and Outlook

In this chapter we reflect over our work, conclude whether the Seaboard is an suitable device to
create live animations with and describe, what further research can be carried out in this field.

7.1 Reflection

Thanks to the well written, fairly well documented and useful examples of the JUCE library, we
were able to quickly create our C++ interface to get the data from the Seaboard. We then had
some problems using Unity, as it has a modified way of interpreting and handling C# code. After
solving these problems, we familiarized ourselves with Unity and conducted many experiments,
creating projects which displayed the inputs of the Seaboard and animated two 3D characters
in many different ways. In retro perspective, it would have made more sense to first decide on
a scenario, which we want to use for our demo. Like this, we spent a lot of time learning a 3D
setup, which we eventually did not use. We decided to use a 2D-scenario, as it was much easier
(for a user not familiar to creating 3D animations and characters) to create own 2D animations
and modify characters. Due to lacking time, we only were able to implement and test three
small mapping schemata.

In general, the weekly meetings helped a lot to keep in pace with this rather open topic. Al-
though we, as already mentioned, lost some time on test-projects, we were able to achieve nearly
all goals set in a first timetable. The only thing missing is an augmented view within Unity, to
allow the user to see more, than just the animated character. Further, we would have liked to
additionally look into some methods of modern music creation, like loopers and multi-channel
setups.

31

7 Conclusion and Outlook

7.2 Conclusion

With this project, we created a working toolchain to test the applicability of a Seaboard in the
field of animating. We present methods for basic mappings and enable simple interaction with
a character by providing a CharacterHandler, that can control parameters of animations, bones
and sprites. Other users will be able to easily create new mappings and extend the ability of the
character within Unity. Especially, with this toolchain no noticeable delay between the touch
interaction and the reaction of the character can be observed.

The Seaboard is an instrument with a very high degree of input variability. While this makes
the Seaboard a superior input device for changing many parameters at the same time, it suffers
from other problems. Interaction with the surface can be hard, as the user needs to coordinate
his fingers in an unfamiliar way on top of a surface, that doesn’t give a direct feedback. As
with any instrument the user needs times to familiarize himself with it. This is a process that,
depending on the abilities of the user, takes a lot of time. In this project, we further looked at
manipulating characters indirectly. It can be expected that using direct manipulation would be
even more difficult, as the number of parameters to continuously change would increase. In this
respect one can say, that the Seaboard is a suitable device to control animations in real-time, but
doesn’t offer a revolutionary interface to create them.

7.3 Outlook

This project is a useful first step for many research projects in this field. We have seen, that the
Seaboard has big potential in the area of real-time animation controlling and is a very versatile
input device.

For further projects, creating new kinds of (learning) mappings could be a rewarding task: this
could simplify the interaction and enable the user to control more parameters in a more intuitive
way. As the Seaboard is lacking a direct way of feedback, an augmented view for the player
could also be very helpful. Extensive user studies would be needed, to be able to make scientific
relevant statements about different mappings and to find out, how the Seaboard compares to
other methods. Working with experienced animators could further deliver useful insights.

Another area, in which further research would be interesting, is facilitating the process of cre-
ating animations with a Seaboard. As it is hard to even picture a detailed animation cognitively,
tools like a looper to iteratively create animations or a system, learning from similar animations,
would be worth looking into.

32

BIBLIOGRAPHY

Bibliography

ADOBE SYSTEMS, 2017. Character animator. [Online; accessed 25-April-2017].

BAI, Y., KAUFMAN, M. D., LIU, C. K., AND POPOVI?, J. 2016. Artistic-dynamics for 2d
animation. In ACM Transactions on Graphics (SIGGRAPH 2016).

BEN SUPPER AND OTHERS, 2015. Midi mpe specifications draft. [Online; accessed 04-May-
2017].

BLACK MIRROR, NETFLIX, 2013. Black mirror. [Online; accessed 29-April-2017].

CHIEN, C.-Y., LIANG, R.-H., LIN, L.-F., CHAN, L., AND CHEN, B.-Y. 2015. Flexibend:
Enabling interactivity of multi-part, deformable fabrications using single shape-sensing strip.
In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology, ACM, New York, NY, USA, UIST ’15, 659–663.

CHOI, B., I RIBERA, R. B., LEWIS, J. P., SEOL, Y., HONG, S., EOM, H., JUNG, S., AND

NOH, J. 2016. Sketchimo: Sketch-based motion editing for articulated characters. ACM
Trans. Graph. 35, 4 (July), 146:1–146:12.

DRAGONBONES, 2017. Dragonbones. [Online; accessed 27-April-2017].

GLAUSER, O., MA, W.-C., PANOZZO, D., JACOBSON, A., HILLIGES, O., AND SORKINE-
HORNUNG, O. 2016. Rig animation with a tangible and modular input device. ACM Trans-
actions on Graphics (Proceedings of ACM SIGGRAPH) 35, 4.

ISHIGAKI, S., WHITE, T., ZORDAN, V. B., AND LIU, C. K. 2009. Performance-based control
interface for character animation. ACM Transactions on Graphics (SIGGRAPH) 28, 3.

JACOBSON, A., PANOZZO, D., GLAUSER, O., PRADALIER, C., HILLIGES, O., AND

SORKINE-HORNUNG, O. 2014. Tangible and modular input device for character articula-
tion. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 33, 4, 82:1–82:12.

KOMATSU, K. 1988. Human skin model capable of natural shape variation. The Visual Com-
puter 3, 5, 265–271.

MESSMER, S., FLEISCHMANN, S., AND SORKINE-HORNUNG, O. 2016. Animato: 2D shape
deformation and animation on mobile devices. In Proceedings of ACM SIGGRAPH ASIA
Symposium on Mobile Graphics and Interactive Applications.

MIDI MANUFACTURERS ASSOCIATION, 2017. Midi specifications. [Online; accessed 04-
May-2017].

ROLI LTD, 2017. Juce. [Online; accessed 27-April-2017].

ROLI LTD, 2017. Roli ltd. [Online; accessed 27-April-2017].

ROLI LTD, 2017. Seaboard, 5d touch. [Online; accessed 27-April-2017].

SEFFAH, A., DONYAEE, M., KLINE, R. B., AND PADDA, H. K. 2006. Usability measurement
and metrics: A consolidated model. Software Quality Journal 14, 2, 159–178.

SEOL, Y., O’SULLIVAN, C., AND LEE, J. 2013. Creature features: Online motion puppetry

33

http://www.google.com/search?q=Character+animator
http://www.google.com/search?q=Artistic-dynamics+for+2d+animation
http://www.google.com/search?q=Artistic-dynamics+for+2d+animation
http://www.google.com/search?q=Midi+mpe+specifications+draft
http://www.google.com/search?q=Black+mirror
http://www.google.com/search?q=Flexibend:+Enabling+interactivity+of+multi-part,+deformable+fabrications+using+single+shape-sensing+strip
http://www.google.com/search?q=Flexibend:+Enabling+interactivity+of+multi-part,+deformable+fabrications+using+single+shape-sensing+strip
http://www.google.com/search?q=Sketchimo:+Sketch-based+motion+editing+for+articulated+characters
http://www.google.com/search?q=Dragonbones
http://www.google.com/search?q=Rig+animation+with+a+tangible+and+modular+input+device
http://www.google.com/search?q=Performance-based+control+interface+for+character+animation
http://www.google.com/search?q=Performance-based+control+interface+for+character+animation
http://www.google.com/search?q=Tangible+and+modular+input+device+for+character+articulation
http://www.google.com/search?q=Tangible+and+modular+input+device+for+character+articulation
http://www.google.com/search?q=Human+skin+model+capable+of+natural+shape+variation
http://www.google.com/search?q=Animato:+2D+shape+deformation+and+animation+on+mobile+devices
http://www.google.com/search?q=Animato:+2D+shape+deformation+and+animation+on+mobile+devices
http://www.google.com/search?q=Midi+specifications
http://www.google.com/search?q=Juce
http://www.google.com/search?q=Roli+ltd
http://www.google.com/search?q=Seaboard,+5d+touch
http://www.google.com/search?q=Usability+measurement+and+metrics:+A+consolidated+model
http://www.google.com/search?q=Usability+measurement+and+metrics:+A+consolidated+model
http://www.google.com/search?q=Creature+features:+Online+motion+puppetry+for+non-human+characters
http://www.google.com/search?q=Creature+features:+Online+motion+puppetry+for+non-human+characters
http://www.google.com/search?q=Creature+features:+Online+motion+puppetry+for+non-human+characters

BIBLIOGRAPHY

for non-human characters. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, ACM, New York, NY, USA, SCA ’13, 213–221.

UNITY TECHNOLOGIES, 2017. Unity. [Online; accessed 25-April-2017].

UNITY TECHNOLOGIES, 2017. Unity manual. [Online; accessed 25-April-2017].

UYOUNG CULTURE & MEDIA CO., LTD., 2017. Uyoung culture & media co., ltd. [Online;
accessed 27-April-2017].

WANG, L. C. T., AND CHEN, C. C. 1991. A combined optimization method for solving the
inverse kinematics problems of mechanical manipulators. IEEE Transactions on Robotics
and Automation 7, 4 (Aug), 489–499.

WELMAN, C. 1993. Inverse kinematics and geometric constraints for articulated figure ma-
nipulation title of thesis: Inverse kinematics and geometric constraints for articulated fig- ure
manipulation.

34

http://www.google.com/search?q=Creature+features:+Online+motion+puppetry+for+non-human+characters
http://www.google.com/search?q=Creature+features:+Online+motion+puppetry+for+non-human+characters
http://www.google.com/search?q=Creature+features:+Online+motion+puppetry+for+non-human+characters
http://www.google.com/search?q=Unity
http://www.google.com/search?q=Unity+manual
http://www.google.com/search?q=Uyoung+culture+&+media+co.,+ltd.
http://www.google.com/search?q=A+combined+optimization+method+for+solving+the+inverse+kinematics+problems+of+mechanical+manipulators
http://www.google.com/search?q=A+combined+optimization+method+for+solving+the+inverse+kinematics+problems+of+mechanical+manipulators
http://www.google.com/search?q=Inverse+kinematics+and+geometric+constraints+for+articulated+figure+manipulation+title+of+thesis:+Inverse+kinematics+and+geometric+constraints+for+articulated+fig-+ure+manipulation
http://www.google.com/search?q=Inverse+kinematics+and+geometric+constraints+for+articulated+figure+manipulation+title+of+thesis:+Inverse+kinematics+and+geometric+constraints+for+articulated+fig-+ure+manipulation
http://www.google.com/search?q=Inverse+kinematics+and+geometric+constraints+for+articulated+figure+manipulation+title+of+thesis:+Inverse+kinematics+and+geometric+constraints+for+articulated+fig-+ure+manipulation

	1 Introduction
	2 Related Work
	2.1 Different Devices to control an animation

	3 Background
	3.1 ROLI
	3.2 Unity
	3.2.1 Anima2D

	4 Mapping Methods
	4.1 Parameter types
	4.1.1 Input parameters (Seaboard)
	4.1.2 Output parameters (character animation)

	4.2 What is a good Mapping?
	4.3 Mappings
	4.3.1 Key-Based Mapping
	4.3.2 Area-Based Mapping
	4.3.3 Gesture recognition

	4.4 Comparison to other Input Devices

	5 Implementation
	5.1 Overview
	5.2 Technical Implementation
	5.2.1 Getting the data from the seaboard
	5.2.2 Connection Unity to the JUCE-library
	5.2.3 Handling the data withing Unity
	5.2.4 Manipulating a Character
	5.2.5 The Character
	5.2.6 The Mappings

	6 User Feedback
	6.1 Test Setup
	6.2 Test Results
	6.2.1 Interaction with the Seaboard
	6.2.2 Ideas for Mappings
	6.2.3 First Mapping: 1:1 KeyBased
	6.2.4 Second Mapping: 1:2 KeyBased
	6.2.5 Third Mapping: AreaBased
	6.2.6 General Comments

	7 Conclusion and Outlook
	7.1 Reflection
	7.2 Conclusion
	7.3 Outlook

	Bibliography

